Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 154(3): 612-623.e7, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29066327

RESUMO

BACKGROUND & AIMS: Helicobacter pylori is remarkable for its genetic variation; yet, little is known about its genetic changes during early stages of human infection, as the bacteria adapt to their new environment. We analyzed genome and methylome variations in a fully virulent strain of H pylori during experimental infection. METHODS: We performed a randomized Phase I/II, observer-blind, placebo-controlled study of 12 healthy, H pylori-negative adults in Germany from October 2008 through March 2010. The volunteers were given a prophylactic vaccine candidate (n = 7) or placebo (n = 5) and then challenged with H pylori strain BCM-300. Biopsy samples were collected and H pylori were isolated. Genomes of the challenge strain and 12 reisolates, obtained 12 weeks after (or in 1 case, 62 weeks after) infection were sequenced by single-molecule, real-time technology, which, in parallel, permitted determination of genome-wide methylation patterns for all strains. Functional effects of genetic changes observed in H pylori strains during human infection were assessed by measuring release of interleukin 8 from AGS cells (to detect cag pathogenicity island function), neutral red uptake (to detect vacuolating cytotoxin activity), and adhesion assays. RESULTS: The observed mutation rate was in agreement with rates previously determined from patients with chronic H pylori infections, without evidence of a mutation burst. A loss of cag pathogenicity island function was observed in 3 reisolates. In addition, 3 reisolates from the vaccine group acquired mutations in the vacuolating cytotoxin gene vacA, resulting in loss of vacuolization activity. We observed interstrain variation in methylomes due to phase variation in genes encoding methyltransferases. CONCLUSIONS: We analyzed adaptation of a fully virulent strain of H pylori to 12 different volunteers to obtain a robust estimate of the frequency of genetic and epigenetic changes in the absence of interstrain recombination. Our findings indicate that the large amount of genetic variation in H pylori poses a challenge to vaccine development. ClinicalTrials.gov no: NCT00736476.


Assuntos
Metilação de DNA , Epigênese Genética , Genoma Bacteriano , Ilhas Genômicas , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Aderência Bacteriana , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Biópsia , Regulação Bacteriana da Expressão Gênica , Genótipo , Alemanha , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Interleucina-8/imunologia , Interleucina-8/metabolismo , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Tempo , Virulência
3.
mBio ; 5(6)2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25516619

RESUMO

UNLABELLED: Helicobacter pylori undergoes rapid microevolution during chronic infection, but very little is known about how this affects host interaction factors. The best-studied adhesin of H. pylori is BabA, which mediates binding to the blood group antigen Lewis b [Le(b)]. To study the dynamics of Le(b) adherence during human infection, we analyzed paired H. pylori isolates obtained sequentially from chronically infected individuals. A complete loss or significant reduction of Le(b) binding was observed in strains from 5 out of 23 individuals, indicating that the Le(b) binding phenotype is quite stable during chronic human infection. Sequence comparisons of babA identified differences due to mutation and/or recombination in 12 out of 16 strain pairs analyzed. Most amino acid changes were found in the putative N-terminal extracellular adhesion domain. One strain pair that had changed from a Le(b) binding to a nonbinding phenotype was used to study the role of distinct sequence changes in Le(b) binding. By transformations of the nonbinding strain with a babA gene amplified from the binding strain, H. pylori strains with mosaic babA genes were generated. Recombinants were enriched for a gain of Le(b) binding by biopanning or for BabA expression on the bacterial surface by pulldown assay. With this approach, we identified several amino acid residues affecting the strength of Le(b) binding. Additionally, the data showed that the C terminus of BabA, which is predicted to encode an outer membrane ß-barrel domain, plays an essential role in the biogenesis of this protein. IMPORTANCE: Helicobacter pylori causes a chronic infection of the human stomach that can lead to ulcers and cancer. The bacterium can bind to gastric epithelial cells with specialized outer membrane proteins. The best-studied protein is the BabA adhesin which binds to the Lewis b blood group antigen. Since H. pylori is a bacterium with very high genetic variability, we asked whether babA evolves during chronic infection and how mutations or recombination in babA affect binding. We found that BabA-mediated adherence was stable in most individuals but observed a complete loss of binding or reduced binding in 22% of individuals. One strain pair in which binding was lost was used to generate babA sequences that were mosaics of a functional allele and a nonfunctional allele, and the mosaic sequences were used to identify amino acids critically involved in binding of BabA to Lewis b.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Variação Genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/metabolismo , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Análise de Sequência de DNA , Deleção de Sequência
4.
PLoS Genet ; 9(9): e1003775, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068950

RESUMO

Both anatomically modern humans and the gastric pathogen Helicobacter pylori originated in Africa, and both species have been associated for at least 100,000 years. Seven geographically distinct H. pylori populations exist, three of which are indigenous to Africa: hpAfrica1, hpAfrica2, and hpNEAfrica. The oldest and most divergent population, hpAfrica2, evolved within San hunter-gatherers, who represent one of the deepest branches of the human population tree. Anticipating the presence of ancient H. pylori lineages within all hunter-gatherer populations, we investigated the prevalence and population structure of H. pylori within Baka Pygmies in Cameroon. Gastric biopsies were obtained by esophagogastroduodenoscopy from 77 Baka from two geographically separated populations, and from 101 non-Baka individuals from neighboring agriculturalist populations, and subsequently cultured for H. pylori. Unexpectedly, Baka Pygmies showed a significantly lower H. pylori infection rate (20.8%) than non-Baka (80.2%). We generated multilocus haplotypes for each H. pylori isolate by DNA sequencing, but were not able to identify Baka-specific lineages, and most isolates in our sample were assigned to hpNEAfrica or hpAfrica1. The population hpNEAfrica, a marker for the expansion of the Nilo-Saharan language family, was divided into East African and Central West African subpopulations. Similarly, a new hpAfrica1 subpopulation, identified mainly among Cameroonians, supports eastern and western expansions of Bantu languages. An age-structured transmission model shows that the low H. pylori prevalence among Baka Pygmies is achievable within the timeframe of a few hundred years and suggests that demographic factors such as small population size and unusually low life expectancy can lead to the eradication of H. pylori from individual human populations. The Baka were thus either H. pylori-free or lost their ancient lineages during past demographic fluctuations. Using coalescent simulations and phylogenetic inference, we show that Baka almost certainly acquired their extant H. pylori through secondary contact with their agriculturalist neighbors.


Assuntos
Trato Gastrointestinal/microbiologia , Genética Populacional , Infecções por Helicobacter/genética , Helicobacter pylori/genética , África , Biópsia , População Negra , Variação Genética , Transtornos do Crescimento/microbiologia , Haplótipos , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Humanos , Filogenia
5.
Proc Natl Acad Sci U S A ; 110(34): 13880-5, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23898187

RESUMO

Helicobacter pylori infects the stomachs of one in two humans and can cause sequelae that include ulcers and cancer. Here we sequenced the genomes of 97 H. pylori isolates from 52 members of two families living in rural conditions in South Africa. From each of 45 individuals, two H. pylori strains were isolated from the antrum and corpus parts of the stomach, and comparisons of their genomes enabled us to study within-host evolution. In 5 of these 45 hosts, the two genomes were too distantly related to be derived from each other and therefore represented evidence of multiple infections. From the remaining 40 genome pairs, we estimated that the synonymous mutation rate was 1.38 × 10(-5) per site per year, with a low effective population size within host probably reflecting population bottlenecks and immune selection. Some individuals showed very little evidence for recombination, whereas in others, recombination introduced up to 100-times more substitutions than mutation. These differences may reflect unequal opportunities for recombination depending on the presence or absence of multiple infections. Comparing the genomes carried by distinct individuals enabled us to establish probable transmission links. Transmission events were found significantly more frequently between close relatives, and between individuals living in the same house. We found, however, that a majority of individuals (27/52) were not linked by transmission to other individuals. Our results suggest that transmission does not always occur within families, and that coinfection with multiple strains is frequent and evolutionarily important despite a fast turnover of the infecting strains within-host.


Assuntos
Evolução Molecular , Genoma Bacteriano/genética , Infecções por Helicobacter/transmissão , Helicobacter pylori/genética , Estômago/microbiologia , Sequência de Bases , Biologia Computacional , Infecções por Helicobacter/microbiologia , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Taxa de Mutação , Densidade Demográfica , Recombinação Genética/genética , População Rural , Análise de Sequência de DNA , África do Sul
6.
FEMS Microbiol Rev ; 37(5): 736-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23790154

RESUMO

The human stomach is a formidable barrier to orally ingested microorganisms and was long thought to be sterile. The discovery of Helicobacter pylori, a carcinogenic bacterial pathogen that infects the stomach mucosa of more than one half of all humans globally, has started a major paradigm shift in our understanding of the stomach as an ecological niche for bacteria. The special adaptations that enable H. pylori to colonize this well-protected habitat have been intensively studied over the last three decades. In contrast, our knowledge concerning bacteria other than H. pylori in the human stomach is still quite limited. However, a substantial body of evidence documents convincingly that bacteria can regularly be sampled from the stomachs of healthy adults. Commonly detected phyla include Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria, and characteristic genera are Lactobacillus, Streptococcus, and Propionibacterium. In this review, we summarize the available literature about the gastric microbiota in humans and selected model animals, discuss the methods used in its characterization, and identify gaps in our knowledge that need to be addressed to advance our understanding of the bacterial colonization of the different layers of the gastric mucosa and its potential role in health and disease.


Assuntos
Microbiota , Estômago/microbiologia , Animais , Biologia Computacional , Helicobacter pylori/isolamento & purificação , Humanos , Estômago/anatomia & histologia , Estômago/fisiologia
7.
Cell Microbiol ; 15(6): 992-1011, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23278999

RESUMO

The enterohepatic Epsilonproteobacterium Helicobacter hepaticus persistently colonizes the intestine of mice and causes chronic inflammatory symptoms in susceptible mouse strains. The bacterial factors causing intestinal inflammation are poorly characterized. A large genomic pathogenicity island, HHGI1, which encodes components of a type VI secretion system (T6SS), was previously shown to contribute to the colitogenic potential of H. hepaticus. We have now characterized the T6SS components Hcp, VgrG1, VgrG2 and VgrG3, encoded on HHGI1, including the potential impact of the T6SS on intestinal inflammation in a mouse T-cell transfer model. The H. hepaticus T6SS components were expressed during the infection and secreted in a T6SS-dependent manner, when the bacteria were cultured either in the presence or in the absence of mouse intestinal epithelial cells. Mutants deficient in VgrG1 displayed a significantly lower colitogenic potential in T-cell-transferred C57BL/6 Rag2(-/-) mice, despite an unaltered ability to colonize mice persistently. Intestinal microbiota analyses demonstrated only minor changes in mice infected with wild-typeH. hepaticus as compared with mice infected with VgrG1-deficient isogenic bacteria. In addition, competitive assays between both wild-type and T6SS-deficient H. hepaticus, and between wild-type H. hepaticus and Campylobacter jejuni or Enterobacteriaceae species did not show an effect of the T6SS on interbacterial competitiveness. Therefore, we suggest that microbiota alterations did not play a major role in the changes of pro-inflammatory potential mediated by the T6SS. Cellular innate pro-inflammatory responses were increased by the secreted T6SS proteins VgrG1 and VgrG2. We therefore concluded that the type VI secretion component VgrG1 can modulate and specifically exacerbate the innate pro-inflammatory effect of the chronic H. hepaticus infection.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Colite/microbiologia , Infecções por Helicobacter/fisiopatologia , Helicobacter hepaticus/fisiologia , Helicobacter hepaticus/patogenicidade , Animais , Proteínas de Bactérias/fisiologia , Campylobacter jejuni/fisiologia , Células Cultivadas , Colite/metabolismo , Colite/fisiopatologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Enterobacteriaceae/fisiologia , Infecções por Helicobacter/metabolismo , Helicobacter hepaticus/genética , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética
8.
Nat Rev Microbiol ; 8(8): 564-77, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20622892

RESUMO

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a major human health problem. The bacteria that live in the gut play an important part in the pathogenesis of IBD. However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in establishing a healthy intestinal barrier and in its disruption is evolving only slowly. In recent years, mouse models of intestinal inflammatory disorders based on defined bacterial infections have been used intensively to dissect the roles of individual bacterial species and specific bacterial components in the pathogenesis of IBD. In this Review, we focus on the impact of pathogenic and commensal bacteria on IBD-like pathogenesis in mouse infection models and summarize important recent developments.


Assuntos
Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Trato Gastrointestinal/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
9.
Mol Nutr Food Res ; 54(5): 652-60, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20169586

RESUMO

Based on the observation that 3 months alpha-tocopherol supplementation caused an up-regulation of the mRNA of vesicular transport proteins in livers of mice, the functional relevance was investigated in RBL-2H3 cells, a model for mast cell degranulation. In total, 24 h incubation with 100 muM alpha-tocopherol enhanced the basal and phorbol-12-myristyl-13-acetate/ionomycin-stimulated release of beta-hexosaminidase and cathepsin D as measured by enzymatic analysis as well as Western blotting and immunocytochemistry, respectively. beta-Tocopherol exerted the same effect, whereas alpha-tocopheryl phosphate and trolox were inactive, indicating that both the side chain and the 6-OH group at the chroman ring are essential for activation of degranulation. alpha-Tocopherol did not induce mRNA expression of soluble NSF-attachment protein receptor (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins, such as N-ethylmaleimide sensitive fusion protein, complexin-2, SNAP23 or syntaxin-3, in the RBL-2H3 cell model. In view of the well known alpha-tocopherol-mediated activation of protein phosphatases, which regulate soluble NSF-attachment protein receptor activities by dephosphorylation, underlying mechanisms are discussed in terms of preventing oxidative inactivation of protein phosphatases and so far unknown functions in certain membrane domains.


Assuntos
alfa-Tocoferol/farmacologia , Animais , Catepsina D/efeitos dos fármacos , Catepsina D/metabolismo , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Primers do DNA , Hipoxantina Fosforribosiltransferase/genética , Cinética , Leucemia Basofílica Aguda/enzimologia , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Mastócitos/fisiologia , Camundongos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , Ratos , alfa-Tocoferol/uso terapêutico , beta-N-Acetil-Hexosaminidases/efeitos dos fármacos , beta-N-Acetil-Hexosaminidases/metabolismo
10.
Free Radic Biol Med ; 43(10): 1439-52, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17936189

RESUMO

Vitamin E (alpha-tocopherol) has demonstrated antioxidant activity and gene-regulatory properties. d-Galactosamine (D-GalN)-induced cell death is mediated by nitric oxide in hepatocytes, and it is associated with hepatic steatosis. The beneficial properties of alpha-tocopherol and their relation to oxidative stress and gene regulation were assessed in D-GalN-induced cell death. Hepatocytes were isolated from human liver resections by a collagenase perfusion technique. alpha-Tocopherol (50 microM) was administered at the advanced stages (10 h) of D-GalN-induced cell death in cultured hepatocytes. Cell death, oxidative stress, alpha-tocopherol metabolism, and NF-kappaB-, pregnane X receptor (PXR)-, and peroxisome proliferator-activated receptor (PPAR-alpha)-associated gene regulation were estimated in the hepatocytes. D-GalN increased cell death and alpha-tocopherol metabolism. alpha-Tocopherol exerted a moderate beneficial effect against apoptosis and necrosis induced by D-GalN. Induction (rifampicin) or inhibition (ketoconazole) of alpha-tocopherol metabolism and overexpression of PXR showed that the increase in PXR-related CYP3A4 expression caused by alpha-tocopherol enhanced cell death in hepatocytes. Nevertheless, the reduction in NF-kappaB activation and inducible nitric oxide synthase expression and the enhancement of PPAR-alpha and carnitine palmitoyl transferase gene expression by alpha-tocopherol may be relevant for cell survival. In conclusion, the cytoprotective properties of alpha-tocopherol are mostly related to gene regulation rather than to antioxidant activity in toxin-induced cell death in hepatocytes.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Citoproteção , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Apoptose/genética , Carnitina O-Palmitoiltransferase/genética , Células Cultivadas , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Galactosamina/antagonistas & inibidores , Galactosamina/toxicidade , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , PPAR alfa/metabolismo , Receptor de Pregnano X , Espécies Reativas de Oxigênio/metabolismo , Receptores de Esteroides/metabolismo , alfa-Tocoferol/metabolismo
11.
Free Radic Res ; 41(8): 930-42, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17654050

RESUMO

Global gene expression profiles of livers from mice, fed diets differing in alpha-tocopherol content, were compared using DNA microarray technology. Three hundred and eighty nine genes were found to significantly differ in their expression level by a factor of 2 or higher between the high and the low alpha-tocopherol group. Functional clustering using the EASE software identified 121 genes involved in transport processes. Twenty-one thereof were involved in (synaptic) vesicular trafficking. Up-regulation of syntaxin 1C (Stx1c), vesicle-associated membrane protein 1 (Vamp1), N-ethylmaleimide-sensitive factor (Nsf) and syntaxin binding protein 1 (Stxbp1, Munc18-1) was verified by real time PCR. At a functional level, alpha-tocopherol increased the secretory response in RBL and PC12 cells. Although here detected in liver, the alpha-tocopherol-responsive pathways are also relevant to neurotransmission. A role of alpha-tocopherol in the vesicular transport might not only affect its own absorption and transport but also explain the neural dysfunctions observed in severe alpha-tocopherol deficiency.


Assuntos
Antioxidantes/administração & dosagem , Dieta , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Vesículas Transportadoras/genética , alfa-Tocoferol/administração & dosagem , Animais , Antioxidantes/análise , Transporte Biológico/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , alfa-Tocoferol/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...